modelgrab module
Created on Mon Jun 10 21:11:08 2019
@author: hanseni
modules to grab models with different specifications and make them ModelFlow conforme
GrabWbModel will take a eviews model and transform it to Business logic
Create a normalized model, add dampning for the stocastic equations
Add add-factors to the stocastic equations
Generate BL for a model which calculates add-factors so a solution will match teh existing values
Generate BL for the model
-grap data from excel sheet
Make model instance for model and add-factor model
Run the model, check that the results match.
For debuggging valuesthe last part checs value in the order, in which they are calculated, and then displays the input to off mark equations
- class modelgrab.GrapWbModel(frml: str = '', data: str = '', des: any = '', scalars: str = '', modelname: str = 'No Name', start: int = 2017, end: int = 2040, country_trans: any = <function GrapWbModel.<lambda>>, country_df_trans: any = <function GrapWbModel.<lambda>>, from_wf2: bool = False, make_fitted: bool = False, fit_start: int = 2000, fit_end: int = 2100, do_add_factor_calc: bool = True, mfmsa: str = '')[source]
Bases:
objectThis class takes a world bank model specification, variable data and variable description and transform it to ModelFlow business language
- frml: str = ''
- data: str = ''
- des: any = ''
- scalars: str = ''
- modelname: str = 'No Name'
- start: int = 2017
- end: int = 2040
- country_trans()
- country_df_trans()
- from_wf2: bool = False
- make_fitted: bool = False
- fit_start: int = 2000
- fit_end: int = 2100
- do_add_factor_calc: bool = True
- mfmsa: str = ''
- property var_description
Adds var descriptions for add factors, exogenizing dummies and exoggenizing values
- property mfmsa_options
Grab the mfmsa options, a world bank speciality
- property mfmsa_start_end
- property dfmodel
The original input data enriched with during variablees, variables containing values for specific historic years and model specific transformation
- test_model(start=None, end=None, maxvar=1000000, maxerr=100, tol=0.0001, showall=False)[source]
Compares a straight calculation with the input dataframe.
shows which variables dont have the same value
- Parameters:
df (TYPE) – dataframe to run.
start (TYPE, optional) – start period. Defaults to None.
end (TYPE, optional) – end period. Defaults to None.
maxvar (TYPE, optional) – how many variables are to be chekked. Defaults to 1_000_000.
maxerr (TYPE, optional) – how many errors to check Defaults to 100.
tol (TYPE, optional) – check for absolute value of difference. Defaults to 0.0001.
showall (TYPE, optional) – show more . Defaults to False.
- Returns:
None.